Nanoparticles (NPs) of WO3-x Compounds by Polyol Route with Enhanced Photochromic Properties

Author:

Bourdin ,Gaudon ,Weill ,Duttine ,Gayot ,Messaddeq ,Cardinal

Abstract

Tungsten trioxide (WO3) is well-known as one of the most promising chromogenic compounds. It has a drastic change of coloration induced from different external stimuli and so its applications are developed as gas sensors, electrochromic panels or photochromic sensors. This paper focuses on the photochromic properties of nanoWO3, with tunable composition (with tunable oxygen sub-stoichiometry). Three reference samples with yellow, blue and black colors were prepared from polyol synthesis followed by post annealing under air, none post-annealing treatment, or a post-annealing under argon atmosphere. These three samples differ in terms of crystallographic structure (cubic system versus monoclinic system), oxygen vacancy concentration, electronic band diagram with occurrence of free or trapped electrons and their photochromic behavior. Constituting one main finding, it is shown that the photochromic behavior is highly dependent on the compound’s composition/color. Rapid and important change of coloration under UV (ultraviolet) irradiation was evidenced especially on the blue compound, i.e., the photochromic coloring efficiency of this compound in terms of contrast between bleached and colored phase, as the kinetic aspect is high. The photochromism is reversible in a few hours. This hence opens a new window for the use of tungsten oxide as smart photochromic compounds.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3