A sight of view on electrical impacts, structural properties and surface roughness of tungsten trioxide thin film: effect of substrate temperatures in WO3/Si device fabrication

Author:

Salim Evan TORCID,Hassan Azhar I,Mohamed Farhan A,Wahid M H A,Fakhri Makram AORCID

Abstract

Abstract Monoclinic WO3 thin films have been effectively deposited by a simple spray pyrolysis technique at a molar concentration of 0.01 M on a glass substrate in the temperature range of 473 to 673 K. These WO3 films were used as an interlayer between the metal and the semiconductor, which formed the basic structure of the photodetector. Effect of substrate temperature on WO3 films during the process of the deposition was systematically interpreted with respect to the structural, morphological, optical and electrical properties of the WO3 films. The x-ray diffraction pattern revealed the polycrystalline nature of the prepared films with monoclinic phases. At the substrate temperature of 623 K, the nano-thin films were strongly bonded to each other as observed from the FE-SEM images. Visible and ultraviolet spectroscopies indicated the band gap (Eg) of the WO3 thin film is 3.30 eV. The dc electrical study recorded a sharp increase in the electrical conductivity of the prepared film at substrate temperature of 623 K for tungsten trioxide. It is worth noting that all diodes showed a positive photoresponse under illumination. In particular, the photodetector with the thickness of 300 nm showed higher responsivity 0.02 A/W and detection specificity 8.29 × 1010 Jones.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3