High-Performance and Flexible Design Scheme with ECC Protection in the Cache

Author:

Zhou Yulun,Liu HongxiaORCID,Xiang Qi,Yin Chenyu

Abstract

To improve the reliability of static random access memory (SRAM), error-correcting codes (ECC) are typically used to protect SRAM in the cache. While improving the reliability, we also need additional circuits to support ECC, including encoding and decoding logic. In a high-speed circuit such as a CPU, the L1 cache maintains the same frequency as the CPU, and the decoding of the ECC codes in the cache consumes considerable combinational logic, resulting in limited frequency and performance. This study proposes a high-performance and flexible design scheme with ECC protection in the cache, in which the cache has two working modes: a high-performance mode and a high-reliability mode. The high-performance mode uses simple ECC codes, which can maintain high frequency with low access latency. The high-reliability mode uses more complex ECC codes, which improves the error correction capability and enhances the reliability of the SRAM. To meet the application requirements of different scenarios, the proposed scheme supports the software in switching between the above two modes by configuring the register, which improves the flexibility of the system. The results of synthesis show that the theoretical maximum frequency of proposed ECC design scheme increased from approximately 1.4 GHz in the conventional ECC design scheme to approximately 2.2 GHz. Some of the error correction capability of the high-performance mode is traded off against a 57% increase in frequency. In the high-reliability mode, the error correction capability of the SRAM is enhanced; however, the latency of accessing the cache increases by one cycle.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3