A Study on the Resolution and Depth of Focus of ArF Immersion Photolithography

Author:

Song JungchulORCID,Kim Chae-Hwan,Lee Ga-WonORCID

Abstract

In this study, the resolution and depth of focus (DOF) of the ArF immersion scanner are measured experimentally according to numerical aperture (NA). Based on the experiment, the theoretical trade-off relationship between the resolution and depth of focus can be confirmed and k1 and k2 are extracted to be about 0.288 and 0.745, respectively. Another observation for a problem in small critical dimension realization is the increase in line width roughness (LWR) according to mask open area ratio. To mitigate the trade-off problem and critical dimension variation, the photoresist thickness effect on depth of focus is analyzed. Generally, the photoresist thickness is chosen considering depth of focus, which is decided by NA. In practice, the depth of focus is found to be influenced by the photoresist thickness, which can be caused by the intensity change of the reflected ArF light. This means that photoresist thickness can be optimized under a fixed NA in ArF immersion photolithography technology according to the critical dimension and pattern density of the target layer.

Funder

Semiconductor Business Innovation Development Project of National Nano Fab Center

Korea Evaluation Institute of Industrial Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3