Fast Tree Detection and Counting on UAVs for Sequential Aerial Images with Generating Orthophoto Mosaicing

Author:

Han Pengcheng,Ma Cunbao,Chen Jian,Chen Lin,Bu ShuhuiORCID,Xu ShibiaoORCID,Zhao YongORCID,Zhang Chenhua,Hagino Tatsuya

Abstract

Individual tree counting (ITC) is a popular topic in the remote sensing application field. The number and planting density of trees are significant for estimating the yield and for futher planing, etc. Although existing studies have already achieved great performance on tree detection with satellite imagery, the quality is often negatively affected by clouds and heavy fog, which limits the application of high-frequency inventory. Nowadays, with ultra high spatial resolution and convenient usage, Unmanned Aerial Vehicles (UAVs) have become promising tools for obtaining statistics from plantations. However, for large scale areas, a UAV cannot capture the whole region of interest in one photo session. In this paper, a real-time orthophoto mosaicing-based tree counting framework is proposed to detect trees using sequential aerial images, which is very effective for fast detection of large areas. Firstly, to guarantee the speed and accuracy, a multi-planar assumption constrained graph optimization algorithm is proposed to estimate the camera pose and generate orthophoto mosaicing simultaneously. Secondly, to avoid time-consuming box or mask annotations, a point supervised method is designed for tree counting task, which greatly speeds up the entire workflow. We demonstrate the effectiveness of our method by performing extensive experiments on oil-palm and acacia trees. To avoid the delay between data acquisition and processing, the proposed framework algorithm is embedded into the UAV for completing tree counting tasks, which also reduces the quantity of data transmission from the UAV system to the ground station. We evaluate the proposed pipeline using sequential UAV images captured in Indonesia. The proposed pipeline achieves an F1-score of 98.2% for acacia tree detection and 96.3% for oil-palm tree detection with online orthophoto mosaicing generation.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low-cost real-time aerial object detection and GPS location tracking pipeline;ISPRS Open Journal of Photogrammetry and Remote Sensing;2024-08

2. Computer Vision Based Tree Stocking for Forest Conservation;2024 4th Interdisciplinary Conference on Electrics and Computer (INTCEC);2024-06-11

3. An Improved Lightweight Deep Learning Model and Implementation for Track Fastener Defect Detection with Unmanned Aerial Vehicles;Electronics;2024-05-05

4. Large-scale assessment of date palm plantations based on UAV remote sensing and multiscale vision transformer;Remote Sensing Applications: Society and Environment;2024-04

5. A Systematic Review of the UAV Technology Usage in ASEAN;IEEE Open Journal of Vehicular Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3