Large-Scale Oil Palm Tree Detection from High-Resolution Satellite Images Using Two-Stage Convolutional Neural Networks

Author:

Li Weijia,Dong Runmin,Fu Haohuan,Yu and Le

Abstract

Being an important economic crop that contributes 35% of the total consumption of vegetable oil, remote sensing-based quantitative detection of oil palm trees has long been a key research direction for both agriculture and environmental purposes. While existing methods already demonstrate satisfactory effectiveness for small regions, performing the detection for a large region with satisfactory accuracy is still challenging. In this study, we proposed a two-stage convolutional neural network (TS-CNN)-based oil palm detection method using high-resolution satellite images (i.e. Quickbird) in a large-scale study area of Malaysia. The TS-CNN consists of one CNN for land cover classification and one CNN for object classification. The two CNNs were trained and optimized independently based on 20,000 samples collected through human interpretation. For the large-scale oil palm detection for an area of 55 km2, we proposed an effective workflow that consists of an overlapping partitioning method for large-scale image division, a multi-scale sliding window method for oil palm coordinate prediction, and a minimum distance filter method for post-processing. Our proposed approach achieves a much higher average F1-score of 94.99% in our study area compared with existing oil palm detection methods (87.95%, 81.80%, 80.61%, and 78.35% for single-stage CNN, Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN), respectively), and much fewer confusions with other vegetation and buildings in the whole image detection results.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sub-national scale mapping of individual olive trees integrating Earth observation and deep learning;ISPRS Journal of Photogrammetry and Remote Sensing;2024-11

2. Semi-supervised multi-class tree crown delineation using aerial multispectral imagery and lidar data;ISPRS Journal of Photogrammetry and Remote Sensing;2024-10

3. A novel vegetation-water resistant soil moisture index for remotely assessing soil surface moisture content under the low-moderate wheat cover;Computers and Electronics in Agriculture;2024-09

4. Olive Tree Segmentation from UAV Imagery;Drones;2024-08-21

5. Palm Tree Diseases Detection Using Deep Learning: A Short Review;2024 8th International Conference on Image and Signal Processing and their Applications (ISPA);2024-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3