Transcriptomic Insights into Mechanisms of Early Seed Maturation in the Garden Pea (Pisum sativum L.)

Author:

Malovichko Yury V.ORCID,Shtark Oksana Y.,Vasileva Ekaterina N.,Nizhnikov Anton A.ORCID,Antonets Kirill S.ORCID

Abstract

The garden pea (Pisum sativum L.) is a legume crop of immense economic value. Extensive breeding has led to the emergence of numerous pea varieties, of which some are distinguished by accelerated development in various stages of ontogenesis. One such trait is rapid seed maturation, which, despite novel insights into the genetic control of seed development in legumes, remains poorly studied. This article presents an attempt to dissect mechanisms of early maturation in the pea line Sprint-2 by means of whole transcriptome RNA sequencing in two developmental stages. By using a de novo assembly approach, we have obtained a reference transcriptome of 25,756 non-redundant entries expressed in pea seeds at either 10 or 20 days after pollination. Differential expression in Sprint-2 seeds has affected 13,056 transcripts. A comparison of the two pea lines with a common maturation rate demonstrates that while at 10 days after pollination, Sprint-2 seeds show development retardation linked to intensive photosynthesis, morphogenesis, and cell division, and those at 20 days show a rapid onset of desiccation marked by the cessation of translation and cell anabolism and accumulation of dehydration-protective and -storage moieties. Further inspection of certain transcript functional categories, including the chromatin constituent, transcription regulation, protein turnover, and hormonal regulation, has revealed transcriptomic trends unique to specific stages and cultivars. Among other remarkable features, Sprint-2 demonstrated an enhanced expression of transposable element-associated open reading frames and an altered expression of major maturation regulators and DNA methyltransferase genes. To the best of our knowledge, this is the first comparative transcriptomic study in which the issue of the seed maturation rate is addressed.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3