Bathymetry of Northwest Greenland Using “Ocean Melting Greenland” (OMG) High-Resolution Airborne Gravity and Other Data

Author:

An Lu,Rignot Eric,Millan RomainORCID,Tinto Kirsty,Willis Josh

Abstract

Marine-terminating glaciers dominate the evolution of the Greenland Ice Sheet (GrIS) and its contribution to sea-level rise. Widespread glacier acceleration has been linked to the warming of ocean waters around the periphery of Greenland but a lack of information on the bathymetry of the continental shelf and glacial fjords has limited our ability to understand how subsurface, warm, salty ocean waters of Atlantic origin (AW) reach the glaciers and melt them from below. Here, we employ high-resolution, airborne gravity data (AIRGrav) in combination with multibeam echo sounding (MBES) data, to infer the bathymetry of the coastal areas of Northwest Greenland for NASA’s Ocean Melting Greenland (OMG) mission. High-resolution, AIRGrav data acquired on a 2 km spacing, 150 m ground clearance, with 1.5 mGal crossover error, is inverted in three dimensions to map the bathymetry. To constrain the inversion away from MBES data, we compare two methods: one based on the Direct Current (DC) shift of the gravity field (absolute minus observed gravity) and another based on the density of the bedrock. We evaluate and compare the two methods in areas with complete MBES coverage. We find the lowest standard error in bed elevation (±60 m) using the DC shift method. When applied to the entire coast of Northwest Greenland, the three-dimensional inversion reveals a complex network of connected sea bed channels, not known previously, that provide natural and varied pathways for AW to reach the glaciers across the continental shelf. The study demonstrates that the gravity approach offers an efficient and practical alternative to extensive ship mapping in ice-filled waters to obtain information critical to understanding and modeling ice-ocean interaction along ice sheet margins.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3