Estimation of Antarctic Ice Sheet Thickness Based on 3D Density Interface Inversion Considering Terrain and Undulating Observation Surface Simultaneously

Author:

Liu Yandong1,Wang Jun1,Li Fang2,Meng Xiaohong1

Affiliation:

1. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China

2. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China

Abstract

The thickness of the Antarctic ice sheet is a crucial parameter for inferring glacier mass and its evolution process. In the literature, the gravity method has been proven to be one of the effective means for estimating ice sheet thickness. And it is a preferred approach when direct measurements are not available. However, few gravity inversion methods are valid in rugged terrain areas with undulating observation surfaces (UOSs). To solve this problem, this paper proposes an improved high-precision 3D density interface inversion method considering terrain and UOSs simultaneously. The proposed method utilizes airborne gravity data at their flight altitudes, instead of the continued data yield from the unstable downward continuation procedure. In addition, based on the undulating right rectangular prism model, the large reliefs of the terrain are included in the iterative inversion. The proposed method is verified on two synthetic examples and is successfully applied to real data in East Antarctica.

Funder

National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3