Comparison of Pre-Trained YOLO Models on Steel Surface Defects Detector Based on Transfer Learning with GPU-Based Embedded Devices

Author:

Nguyen Hoan-Viet,Bae Jun-Hee,Lee Yong-Eun,Lee Han-Sung,Kwon Ki-Ryong

Abstract

Steel is one of the most basic ingredients, which plays an important role in the machinery industry. However, the steel surface defects heavily affect its quality. The demand for surface defect detectors draws much attention from researchers all over the world. However, there are still some drawbacks, e.g., the dataset is limited accessible or small-scale public, and related works focus on developing models but do not deeply take into account real-time applications. In this paper, we investigate the feasibility of applying stage-of-the-art deep learning methods based on YOLO models as real-time steel surface defect detectors. Particularly, we compare the performance of YOLOv5, YOLOX, and YOLOv7 while training them with a small-scale open-source NEU-DET dataset on GPU RTX 2080. From the experiment results, YOLOX-s achieves the best accuracy of 89.6% mAP on the NEU-DET dataset. Then, we deploy the weights of trained YOLO models on Nvidia devices to evaluate their real-time performance. Our experiments devices consist of Nvidia Jetson Nano and Jetson Xavier AGX. We also apply some real-time optimization techniques (i.e., exporting to TensorRT, lowering the precision to FP16 or INT8 and reducing the input image size to 320 × 320) to reduce detection speed (fps), thus also reducing the mAP accuracy.

Funder

Technology Development Program

Ministry of SMEs and Startups

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Small object detection (SOD) system for comprehensive construction site safety monitoring;Automation in Construction;2023-12

2. A Deep Learning‐Based Approach to the Estimation of Jominy Profile of Medium‐Carbon Quench Hardenable Steels;steel research international;2023-11-08

3. Detection of cigar appearance defects based on improved YOLOv5;Fifth International Conference on Artificial Intelligence and Computer Science (AICS 2023);2023-10-17

4. Real-Time System for Detection Hidden and Visible Keypoints of Rainbow Trout;2023 International Conference on Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS);2023-09-25

5. Verification of Data from Supersensitive Detector of Hydrosphere Pressure Variations;Sensors;2023-08-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3