Surface Defect Detection Methods for Industrial Products: A Review

Author:

Chen YajunORCID,Ding Yuanyuan,Zhao FanORCID,Zhang Erhu,Wu Zhangnan,Shao LinhaoORCID

Abstract

The comprehensive intelligent development of the manufacturing industry puts forward new requirements for the quality inspection of industrial products. This paper summarizes the current research status of machine learning methods in surface defect detection, a key part in the quality inspection of industrial products. First, according to the use of surface features, the application of traditional machine vision surface defect detection methods in industrial product surface defect detection is summarized from three aspects: texture features, color features, and shape features. Secondly, the research status of industrial product surface defect detection based on deep learning technology in recent years is discussed from three aspects: supervised method, unsupervised method, and weak supervised method. Then, the common key problems and their solutions in industrial surface defect detection are systematically summarized; the key problems include real-time problem, small sample problem, small target problem, unbalanced sample problem. Lastly, the commonly used datasets of industrial surface defects in recent years are more comprehensively summarized, and the latest research methods on the MVTec AD dataset are compared, so as to provide some reference for the further research and development of industrial surface defect detection technology.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference149 articles.

1. Row‐level algorithm to improve real‐time performance of glass tube defect detection in the production phase

2. Fabric Defect Detection Using Computer Vision Techniques: A Comprehensive Review

3. Synthetic data augmentation for surface defect detection and classification using deep learning

4. Adaptive segmentation algorithm for metal surface defects;Ma;Chin. J. Sci. Instrum.,2017

5. Review of Development and Application of Defect Detection Technology;Li;Acta Autom. Sin.,2020

Cited by 147 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3