TSD-Truncated Structurally Aware Distance for Small Pest Object Detection

Author:

Huang XiaowenORCID,Dong Jun,Zhu Zhijia,Ma DongORCID,Ma Fan,Lang Luhong

Abstract

As deep learning has been successfully applied in various domains, it has recently received considerable research attention for decades, making it possible to efficiently and intelligently detect crop pests. Nevertheless, the detection of pest objects is still challenging due to the lack of discriminative features and pests’ aggregation behavior. Recently, intersection over union (IoU)-based object detection has attracted much attention and become the most widely used metric. However, it is sensitive to small-object localization bias; furthermore, IoU-based loss only works when ground truths and predicted bounding boxes are intersected, and it lacks an awareness of different geometrical structures. Therefore, we propose a simple and effective metric and a loss function based on this new metric, truncated structurally aware distance (TSD). Firstly, the distance between two bounding boxes is defined as the standardized Chebyshev distance. We also propose a new regression loss function, truncated structurally aware distance loss, which consider the different geometrical structure relationships between two bounding boxes and whose truncated function is designed to impose different penalties. To further test the effectiveness of our method, we apply it on the Pest24 small-object pest dataset, and the results show that the mAP is 5.0% higher than other detection methods.

Funder

Central Government Guides Local Science and Technology Development Special Fundation Projects of China

Natural Science Research Project of Colleges and Universities in Anhui Province

Natural Science Foundation of Anhui Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3