Object Detection in Autonomous Driving Scenarios Based on an Improved Faster-RCNN

Author:

Zhou Yan,Wen Sijie,Wang Dongli,Mu Jinzhen,Richard Irampaye

Abstract

Object detection is one of the key algorithms in automatic driving systems. Aiming at addressing the problem of false detection and the missed detection of both small and occluded objects in automatic driving scenarios, an improved Faster-RCNN object detection algorithm is proposed. First, deformable convolution and a spatial attention mechanism are used to improve the ResNet-50 backbone network to enhance the feature extraction of small objects; then, an improved feature pyramid structure is introduced to reduce the loss of features in the fusion process. Three cascade detectors are introduced to solve the problem of IOU (Intersection-Over-Union) threshold mismatch, and side-aware boundary localization is applied for frame regression. Finally, Soft-NMS (Soft Non-maximum Suppression) is used to remove bounding boxes to obtain the best results. The experimental results show that the improved Faster-RCNN can better detect small objects and occluded objects, and its accuracy is 7.7% and 4.1% respectively higher than that of the baseline in the eight categories selected from the COCO2017 and BDD100k data sets.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluación comparativa del rendimiento de modelos de detección de residuos en entornos urbanos;REVISTA AMBIENTAL AGUA, AIRE Y SUELO;2024-05-10

2. Research on multi-object detection technology for road scenes based on SDG-YOLOv5;PeerJ Computer Science;2024-04-30

3. Road Traffic Accident Prediction using Deep Learning;2024 International Conference on Cognitive Robotics and Intelligent Systems (ICC - ROBINS);2024-04-17

4. Sow Behavior Object Detection Network Using Swin Transformer;2023 13th International Conference on Information Science and Technology (ICIST);2023-12-08

5. Driving Perception in Challenging Road Scenarios: An Empirical Study;2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA);2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3