Interfacial Characterization and Thermal Conductivity of Diamond/Cu Composites Prepared by Liquid-Solid Separation Technique

Author:

Li Yaqiang1,Zhou Hongyu2ORCID,Wu Chunjing3,Yin Zheng4,Liu Chang1,Liu Junyou3,Shi Zhongliang5

Affiliation:

1. Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China

2. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China

3. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

4. Qingdao Tianhe Manufacturing Transformation and Upgrading Research Institute Co., Ltd., Qingdao 266400, China

5. School of Materials Science and Engineering, Baise University, Baise 533000, China

Abstract

Diamond/Cu composites are widely studied as a new generation of thermal management materials in the field of electronic packaging and heat sink materials. The surface modification of diamond can improve interfacial bonding between the diamond and Cu matrix. The Ti-coated diamond/Cu composites are prepared via an independently developed liquid-solid separation (LSS) technology. It is worth noting that there are obvious differences for the surface roughness between the diamond-{100} and -{111} face by AFM analysis, which may be related to the surface energy of different facets. In this work, the formation of titanium carbide (TiC) phase makes up the chemical incompatibility between the diamond and copper, and the thermal conductivities of 40 vol.% Ti-coated diamond/Cu composites can be improved to reach 457.22 W·m−1·K−1. The results estimated by the differential effective medium (DEM) model illustrate that the thermal conductivity for 40 vol.% Ti-coated diamond/Cu composites show a dramatic decline with increasing TiC layer thickness, giving a critical value of ~260 nm.

Funder

Beijing Science and Technology Plan from the Beijing Municipal Commission of Education

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference56 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3