Progress in the Copper-Based Diamond Composites for Thermal Conductivity Applications

Author:

Chen Kang1,Leng Xuesong1,Zhao Rui1,Kang Yiyao1,Chen Hongsheng1

Affiliation:

1. Institute of Special Environments Physical Sciences, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China

Abstract

Copper-based diamond composites have been the focus of many investigations for higher thermal conductivity applications. However, the natural non-wetting behavior between diamond particles and copper matrix makes it difficult to fabricate copper-based diamond composites with high thermal conductivity. Thus, to promote wettability between copper and diamond particles, the copper/diamond interface must be modified by coating alloying elements on the diamond surface or by adding active alloying elements with carbon in the copper matrix. In this paper, we review the research progress on copper-based diamond composites, including theoretical models for calculating the thermal conductivity and the effect of process parameters on the thermal conductivity of copper-based diamond composites. The factors that affect interfacial thermal conductivity are emphatically analyzed in this review. Finally, the current problems of copper-based diamond composites and future research trends are recommended.

Funder

Open Project Program of State Key Laboratory of Advanced Welding and Joining

Guangdong Basic and Applied Basic Research Foundation

Characteristic Innovation Project of Guangdong Educational Department

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Corrosion of solid lithium on copper/tantalum/silicon carbide at elevated temperatures for AB-BNCT target;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3