Affiliation:
1. Institute of Physics, Goethe University, 60438 Frankfurt am Main, Germany
Abstract
Focused electron-beam-induced deposition (FEBID) is a highly versatile direct-write approach with particular strengths in the 3D nanofabrication of functional materials. Despite its apparent similarity to other 3D printing approaches, non-local effects related to precursor depletion, electron scattering and sample heating during the 3D growth process complicate the shape-true transfer from a target 3D model to the actual deposit. Here, we describe an efficient and fast numerical approach to simulate the growth process, which allows for a systematic study of the influence of the most important growth parameters on the resulting shape of the 3D structures. The precursor parameter set derived in this work for the precursor Me3PtCpMe enables a detailed replication of the experimentally fabricated nanostructure, taking beam-induced heating into account. The modular character of the simulation approach allows for additional future performance increases using parallelization or drawing on the use of graphics cards. Ultimately, beam-control pattern generation for 3D FEBID will profit from being routinely combined with this fast simulation approach for optimized shape transfer.
Funder
Deutsche Forschungsgemeinschaft DFG
Subject
General Materials Science,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献