Possibility of High Ionic Conductivity and High Fracture Toughness in All-Dislocation-Ceramics

Author:

Yasui Kyuichi1ORCID,Hamamoto Koichi1

Affiliation:

1. National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan

Abstract

Based on the results of numerical calculations as well as those of some related experiments which are reviewed in the present paper, it is suggested that solid electrolytes filled with appropriate dislocations, which is called all-dislocation-ceramics, are expected to have considerably higher ionic conductivity and higher fracture toughness than those of normal solid electrolytes. Higher ionic conductivity is due to the huge ionic conductivity along dislocations where the formation energy of vacancies is considerably lower than that in the bulk solid. Furthermore, in all-dislocation- ceramics, dendrite formation could be avoided. Higher fracture toughness is due to enhanced emissions of dislocations from a crack tip by pre-existing dislocations, which causes shielding of a crack tip, energy dissipation due to plastic deformation and heating, and crack-tip blunting. All-dislocation-ceramics may be useful for all-solid-state batteries.

Funder

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3