The Effect of Sintering Temperature on Phase-Related Peculiarities of the Microstructure, Flexural Strength, and Fracture Toughness of Fine-Grained ZrO2–Y2O3–Al2O3–CoO–CeO2–Fe2O3 Ceramics

Author:

Kulyk Volodymyr1ORCID,Vasyliv Bogdan1ORCID,Duriagina Zoia1ORCID,Lyutyy Pavlo1,Vavrukh Valentyna1ORCID,Kostryzhev Andrii2

Affiliation:

1. Department of Materials Science and Engineering, Lviv Polytechnic National University, 12 S. Bandera Street, 79013 Lviv, Ukraine

2. Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia

Abstract

The lifetime of products made of ceramic materials is related to their mechanical characteristics such as strength, hardness, wear resistance, and fracture toughness. The purpose of this work was to study the effect of sintering temperature on the phase-related peculiarities of the microstructures, causing changes in the flexural strength and fracture toughness of fine-grained ZrO2–Y2O3–Al2O3–CoO–CeO2–Fe2O3 ceramics. Flexural strength and fracture toughness tests were carried out using ceramics sintered in three modes (2 h at 1550 °C, 1580 °C, and 1620 °C in argon), and thorough phase, microstructure, and fractographic analyses were performed. For the ceramic sintered at 1550 °C, a mixed mechanism of intergranular fracture of the t-ZrO2 phase particles and cleavage fracture of the Ce–Al–O phase particles was found, which is reflected in its comparatively low fracture toughness. For the ceramic sintered at 1580 °C, a fracture developed along the boundaries of the aggregates, made of completely recrystallized fine ZrO2 grains with a high bond strength between adjacent t-ZrO2 grains; this corresponds to the highest fracture toughness (5.61 ± 0.24 MPa·m1/2) of this ceramic. For the ceramic sintered at 1620 °C, a transgranular fracture of the t-ZrO2 phase and Ce–Al–O phase particles and crack propagation along the t-ZrO2/Ce–Al–O interface were revealed; this caused a decrease in fracture toughness.

Funder

Ministry of Education and Science of Ukraine

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3