Merits and Demerits of Machine Learning of Ferroelectric, Flexoelectric, and Electrolytic Properties of Ceramic Materials

Author:

Yasui Kyuichi1ORCID

Affiliation:

1. National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan

Abstract

In the present review, the merits and demerits of machine learning (ML) in materials science are discussed, compared with first principles calculations (PDE (partial differential equations) model) and physical or phenomenological ODE (ordinary differential equations) model calculations. ML is basically a fitting procedure of pre-existing (experimental) data as a function of various factors called descriptors. If excellent descriptors can be selected and the training data contain negligible error, the predictive power of a ML model is relatively high. However, it is currently very difficult for a ML model to predict experimental results beyond the parameter space of the training experimental data. For example, it is pointed out that all-dislocation-ceramics, which could be a new type of solid electrolyte filled with appropriate dislocations for high ionic conductivity without dendrite formation, could not be predicted by ML. The merits and demerits of first principles calculations and physical or phenomenological ODE model calculations are also discussed with some examples of the flexoelectric effect, dielectric constant, and ionic conductivity in solid electrolytes.

Funder

Japan Science and Technology Agency

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3