Aging Interfacial Structure and Abnormal Tensile Strength of SnAg3Cu0.5/Cu Solder Joints

Author:

Chen Dongdong,Qin Junhu,Zhang Xin,Liang Dongcheng,Bai Hailong,Yi Jianhong,Yan Jikang

Abstract

In this study, the interfacial structure and abnormal long-term increase of tensile strength in the interfacial intermetallic compounds (IMCs) between SnAg3Cu0.5 solder and Cu substrates during isothermal aging were investigated. After reflow soldering, the IMC layer at the interface was thin and scallop-type. The interfacial layer became thicker with the increase in aging time. After 200 h of aging at 150 °C, the thickness of the interface gradually increased to 3.93 μm and the interface became smooth. Compared with the unaged Cu-Sn interface, the aged joint interface contained more Cu3Sn. The top of the IMC being reflown was relatively smooth, but became denser and prismatic in shape after 200 h of aging at 150 °C. The tensile strength of the joint, immediately after the reflow, reached 81.93 MPa. The tensile properties of the solder joints weakened and then strengthened as they aged. After 200 h of aging at 150 °C, the tensile strength was 83.86 MPa, which exceeded that of the unaged solder joint interface, because the fracture mode of the solder joints changed during aging.

Funder

Yunnan Province-New Material Special Project

Yunnan Province Transformation Research Institute Technology Development Research Project-Innovation Guidance and Technology Enterprise Cultivation Plan

Fundamental Research and Applied Basic Research Enterprise Joint Project between Yunnan Provincial Department of Science and Technology and Yunnan Tin Group (Hold) company Limited

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3