Processing and Properties of Tungsten-Steel Composites and FGMs Prepared by Spark Plasma Sintering

Author:

Matějíček JiříORCID,Mušálek Radek,Dlabáček Zdeněk,Klevarová VeronikaORCID,Kocmanová Lenka

Abstract

Tungsten is the prime candidate material for the plasma-facing components of fusion reactors. For the joining of tungsten armor to the cooling system or support structure, composites or graded interlayers can be used to reduce the stress concentration at the interface. These interlayers can be produced by several technologies. Among these, spark plasma sintering appears advantageous because of its ability to fabricate fully dense parts at lower temperatures and in a shorter time than traditional powder metallurgy techniques, thanks to the concurrent application of temperature, pressure, and electrical current. In this work, spark plasma sintering of tungsten-steel composites and functionally graded layers (FGMs) was investigated. As a first step, pure tungsten and steel powders of different sizes were sintered at a range of temperatures to find a suitable temperature window for fully dense compacts. Characterization of the sintered compacts included structure (by SEM); porosity (by the Archimedean method and image analysis); thermal diffusivity (by the flash method) and mechanical properties (microhardness and flexural strength). Compacts with practically full density and fine grains were obtained; while the temperature needed to achieve full sintering decreased with decreasing powder size (down to about 1500 °C for the 0.4 μm powder). For fully sintered compacts, the hardness and thermal diffusivity increased with decreasing powder size. Composites with selected tungsten/steel ratios were produced at several conditions and characterized. At temperatures of 1100 °C or above, intermetallic formation was observed in the composites; nevertheless, without a detrimental effect on the mechanical strength. Finally, the formation of graded layers and tungsten-steel joints in various configurations was demonstrated.

Funder

Czech Science Foundation

European Fusion Development Agreement

Publisher

MDPI AG

Subject

General Materials Science

Reference30 articles.

1. Materials for Fusion Applications;Acta Polytech.,2013

2. Tungsten as a Plasma-Facing Material;Konings;Comprehensive Nuclear Materials,2012

3. Recent Progress in Research on Tungsten Materials for Nuclear Fusion Applications in Europe;Rieth;J. Nucl. Mater.,2013

4. Physics Basis and Design of the ITER Plasma-Facing Components;Pitts;J. Nucl. Mater.,2011

5. Functionally Graded Vacuum Plasma Sprayed and Magnetron Sputtered Tungsten/EUROFER97 Interlayers for Joints in Helium-Cooled Divertor Components;Weber;J. Nucl. Mater.,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3