Abstract
Long-term EEG monitoring in neonatal intensive care units (NICU) is challenged with finding solutions for setting up and maintaining a sufficient recording quality with limited technical experience. The current study evaluates different solutions for the skin–electrode interface and develops a disposable EEG cap for newborn infants. Several alternative materials for the skin–electrode interface were compared to the conventional gel and paste: conductive textiles (textured and woven), conductive Velcro, sponge, super absorbent hydrogel (SAH), and hydro fiber sheets (HF). The comparisons included the assessment of dehydration and recordings of signal quality (skin interphase impedance and powerline (50 Hz) noise) for selected materials. The test recordings were performed using snap electrodes integrated into a forearm sleeve or a forehead band along with skin–electrode interfaces to mimic an EEG cap with the aim of long-term biosignal recording on unprepared skin. In the hydration test, conductive textiles and Velcro performed poorly. While the SAH and HF remained sufficiently hydrated for over 24 h in an incubator-mimicking environment, the sponge material was dehydrated during the first 12 h. Additionally, the SAH was found to have a fragile structure and was electrically prone to artifacts after 12 h. In the electrical impedance and recording comparisons of muscle activity, the results for thick-layer HF were comparable to the conventional gel on unprepared skin. Moreover, the mechanical instability measured by 1–2 Hz and 1–20 Hz normalized relative power spectrum density was comparable with clinical EEG recordings using subdermal electrodes. The results together suggest that thick-layer HF at the skin–electrode interface is an effective candidate for a preparation-free, long-term recording, with many advantages, such as long-lasting recording quality, easy use, and compatibility with sensitive infant skin contact.
Funder
European Union's Horizon 2020 research and innovation program under the Marie Sklodowska
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献