Deep Learning Techniques for Pattern Recognition in EEG Audio Signal-Processing-Based Eye-Closed and Eye-Open Cases

Author:

Husham Almukhtar FirasORCID,Abbas Ajwad Asmaa,Kamil Amna Shibib,Jaleel Refed AdnanORCID,Adil Kamil Raya,Jalal Mosa Sarah

Abstract

Recently, pattern recognition in audio signal processing using electroencephalography (EEG) has attracted significant attention. Changes in eye cases (open or closed) are reflected in distinct patterns in EEG data, gathered across a range of cases and actions. Therefore, the accuracy of extracting other information from these signals depends significantly on the prediction of the eye case during the acquisition of EEG signals. In this paper, we use deep learning vector quantization (DLVQ), and feedforward artificial neural network (F-FANN) techniques to recognize the case of the eye. The DLVQ is superior to traditional VQ in classification issues due to its ability to learn a code-constrained codebook. On initialization by the k-means VQ approach, the DLVQ shows very promising performance when tested on an EEG-audio information retrieval task, while F-FANN classifies EEG-audio signals of eye state as open or closed. The DLVQ model achieves higher classification accuracy, higher F score, precision, and recall, as well as superior classification abilities as compared to the F-FANN.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3