Changing Causes of Drought in the Urmia Lake Basin—Increasing Influence of Evaporation and Disappearing Snow Cover

Author:

Habibi Maral,Babaeian ImanORCID,Schöner Wolfgang

Abstract

The water level of the Urmia Lake Basin (ULB), located in the northwest of Iran, started to decline dramatically about two decades ago. As a result, the area has become the focus of increasing scientific research. In order to improve understanding of the connections between declining lake level and changing local drought conditions, three common drought indices are employed to analyze the period 1981–2018: The Standard Precipitation Index (SPI), the Standard Precipitation-Evaporation Index (SPEI), and the Standardized Snow Melt and Rain Index (SMRI). Although rainfall is a significant indicator of water availability, temperature is also a key factor since it determines rates of evapotranspiration and snowmelt. These different processes are captured by the three drought indices mentioned above to describe drought in the catchment. Therefore, the main objective of this paper is to provide a comparative analysis of drought over the ULB by incorporating different drought indices. Since there is not enough long-term observational data of sufficiently high density for the ULB region, ECMWF Reanalysis data version 5(ERA5) has been used to estimate SPI, SPEI, and SMRI drought indicators. These are shown to work well, with AUC-ROC > 0.9, in capturing different classes of basin drought characteristics. The results show a downward trend for SPEI and SMRI (but not for SPI), suggesting that both evaporation and lack of snowmelt exacerbate droughts. Owing to the increasing temperatures in the basin and the decrease in snowfall, drought events have become particularly pronounced in the SPEI and SMRI time series since 1995. No significant SMRI drought was detected prior to 1995, thus indicating that sufficient snowfall was available at the beginning of the study period. The study results also reveal that the decrease in lake water level from 2010 to 2018 was not only caused by changes in the water balance components, but also by unsustainable water management.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference92 articles.

1. Chapter 12—Long-Term Climate Change: Projections, Commitments and Irreversibility;Collins,2013

2. Uncertainty and hotspots in 21st century projections of agricultural drought from CMIP5 models

3. A Review of Drought in the Middle East and Southwest Asia

4. Qaht-e-Pool—A Cash Famine: Food Insecurity in Afghanistan 1999–2002;Lautze,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3