A Comprehensive Assessment of Climate Change and Anthropogenic Effects on Surface Water Resources in the Lake Urmia Basin, Iran

Author:

Kazemi Garajeh Mohammad12ORCID,Akbari Rojin3,Aghaei Chaleshtori Sepide4,Shenavaei Abbasi Mohammad5ORCID,Tramutoli Valerio2ORCID,Lim Samsung6ORCID,Sadeqi Amin7ORCID

Affiliation:

1. Department of Civil, Constructional and Environmental Engineering, Sapienza University of Rome, 00185 Rome, Italy

2. School of Engineering, Università degli Studi della Basilicata, Via Nazario Sauro 85, 85100 Potenza, Italy

3. Department of Natural Resources Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran

4. Department of Irrigation, College of Agriculture, Isfahan University of Technology, Isfahan 84156-8311, Iran

5. Department of Engineering and Natural Sciences, Faculty of Materials Science and Environmental Engineering, Tampere University, 33014 Tampere, Finland

6. School of Civil and Environmental Engineering, University of New South Wales, Sydney 2052, Australia

7. Department of Geography and Geology, University of Turku, 20014 Turku, Finland

Abstract

In recent decades, the depletion of surface water resources within the Lake Urmia Basin (LUB), Iran, has emerged as a significant environmental concern. Both anthropogenic activities and climate change have influenced the availability and distribution of surface water resources in this area. This research endeavors to provide a comprehensive evaluation of the impacts of climate change and anthropogenic activities on surface water resources across the LUB. Various critical climatic and anthropogenic factors affecting surface water bodies, such as air temperature (AT), cropland (CL), potential evapotranspiration (PET), snow cover, precipitation, built-up areas, and groundwater salinity, were analyzed from 2000 to 2021 using the Google Earth Engine (GEE) cloud platform. The JRC-Global surface water mapping layers V1.4, with a spatial resolution of 30 m, were employed to monitor surface water patterns. Additionally, the Mann–Kendall (MK) non-parametric trend test was utilized to identify statistically significant trends in the time series data. The results reveal negative correlations of −0.56, −0.89, −0.09, −0.99, and −0.79 between AT, CL, snow cover, built-up areas, and groundwater salinity with surface water resources, respectively. Conversely, positive correlations of 0.07 and 0.12 were observed between precipitation and PET and surface water resources, respectively. Notably, the findings indicate that approximately 40% of the surface water bodies in the LUB have remained permanent over the past four decades. However, there has been a loss of around 30% of permanent water resources, transitioning into seasonal water bodies, which now account for nearly 13% of the total. The results of our research also indicate that December and January are the months with the most water presence over the LUB from 1984 to 2021. This is because these months align with winter in the LUB, during which there is no water consumption for the agriculture sector. The driest months in the study area are August, September, and October, with the presence of water almost at zero percent. These months coincide with the summer and autumn seasons in the study area. In summary, the results underscore the significant impact of human activities on surface water resources compared to climatic variables.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3