A Review of Drought in the Middle East and Southwest Asia

Author:

Barlow Mathew1,Zaitchik Benjamin2,Paz Shlomit3,Black Emily4,Evans Jason5,Hoell Andrew6

Affiliation:

1. Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts Lowell, Lowell, Massachusetts

2. Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland

3. Department of Geography, University of Haifa, Haifa, Israel

4. Department of Meteorology, University of Reading, Reading, United Kingdom

5. Climate Change Research Centre, University of New South Wales, Kensington, Australia

6. Department of Geography, University of California, Santa Barbara, Santa Barbara, California

Abstract

Abstract The Middle East and southwest Asia are a region that is water stressed, societally vulnerable, and prone to severe droughts. Large-scale climate variability, particularly La Niña, appears to play an important role in regionwide droughts, including the two most severe of the last 50 years—1999–2001 and 2007/08—with implications for drought forecasting. Important dynamical factors include orography, thermodynamic influence on vertical motion, storm-track changes, and moisture transport. Vegetation in the region is strongly impacted by drought and may provide an important feedback mechanism. In future projections, drying of the eastern Mediterranean region is a robust feature, as are temperature increases throughout the region, which will affect evaporation and the timing and intensity of snowmelt. Vegetation feedbacks may become more important in a warming climate. There are a wide range of outstanding issues for understanding, monitoring, and predicting drought in the region, including dynamics of the regional storm track, the relative importance of the range of dynamical mechanisms related to drought, the regional coherence of drought, the relationship between synoptic-scale mechanisms and drought, the predictability of vegetation and crop yields, the stability of remote influences, data uncertainty, and the role of temperature. Development of a regional framework for cooperative work and dissemination of information and existing forecasts would speed understanding and make better use of available information.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3