Valve Internal Leakage Rate Quantification Based on Factor Analysis and Wavelet-BP Neural Network Using Acoustic Emission

Author:

Zhao Hanxue,Li Zhenlin,Zhu Shenbin,Yu Ying

Abstract

Valve internal leakage is easily found because of various defects resulting from environmental factors and load fluctuation. The timely detection of valve internal leakage is of great significance to the safe operation of pipelines. As an effective means for detecting valve internal leakage, the acoustic emission technique is characterized by nonintrusive and strong anti-interference ability, which can realize the in situ monitoring of the valve running status in real time. In this paper, acoustic emission signals from an internal leaking valve were obtained experimentally. Then, the dimensionality reduction technology based on factor analysis was introduced to the processing of valve internal leakage detection data. Next, the wavelet decomposition was carried out to decompose the sample feature set into four subsets. Finally, the decomposed sample feature sets were inputted into the error backpropagation (BP) neural network quantitative model, respectively. The optimized results show that the predicted internal leakage rate by the wavelet-BP neural network model has good precision with an error of less than 10%. The wavelet-BP neural network model can realize the analysis of the valve internal leakage rate quantitatively and has good robustness, which provides technical support and guarantees the safe operation of natural gas pipeline valves.

Funder

Science Foundation of China University of Petroleum, Beijing

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3