Research on Detection and Location of Fluid-Filled Pipeline Leakage Based on Acoustic Emission Technology

Author:

Pan Shengshan,Xu Zhengdan,Li Dongsheng,Lu Dang

Abstract

Because of the inconvenience of installing sensors in a buried pipeline, an acoustic emission sensor is initially proposed for collecting and analyzing leakage signals inside the pipeline. Four operating conditions of a fluid-filled pipeline are established and a support vector machine (SVM) method is used to accurately classify the leakage condition of the pipeline. Wavelet decomposition and empirical mode decomposition (EMD) methods are initially used in denoising these signals to address the problem in which original leakage acoustic emission signals contain too much noise. Signals with more information and energy are then reconstructed. The time-delay estimation method is finally used to accurately locate the leakage source in the pipeline. The results show that by using SVM, wavelet decomposition and EMD methods, leakage detection in a liquid-filled pipe with built-in acoustic emission sensors is effective and accurate and provides a reference value for real-time online monitoring of pipeline operational status with broad application prospects.

Funder

National Natural Science Foundation of China (NSFC)

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3