A Recognition and Classification Method for Underground Acoustic Emission Signals Based on Improved CELMD and Swin Transformer Neural Networks

Author:

Xie Xuebin1ORCID,Yang Yunpeng1

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

Abstract

To address the challenges in processing and identifying mine acoustic emission signals, as well as the inefficiency and inaccuracy issues prevalent in existing methods, an enhanced CELMD approach is adopted for preprocessing the acoustic emission signals. This method leverages correlation coefficient filtering to extract the primary components, followed by classification and recognition using the Swin Transformer neural network. The results demonstrate that the improved CELMD method effectively extracts the main features of the acoustic emission signals with higher decomposition accuracy and reduced occurrences of mode mixing and end effects. Furthermore, the Swin Transformer neural network exhibits outstanding performance in classifying acoustic emission signals, surpassing both convolutional neural networks and ViT neural networks in terms of accuracy and convergence speed. Moreover, utilizing preprocessed data from the improved CELMD enhances the performance of the Swin Transformer neural network. With an increase in data volume, the accuracy, stability, and convergence speed of the Swin Transformer neural network continuously improve, and using preprocessed data from the enhanced CELMD yields superior training results compared to those obtained without preprocessing.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3