A Short-Time Repeat TLS Survey to Estimate Rates of Glacier Retreat and Patterns of Forefield Development (Case Study: Scottbreen, SW Svalbard)

Author:

Kociuba WaldemarORCID,Gajek Grzegorz,Franczak Łukasz

Abstract

The study presents findings from comparative analyses of high-resolution differential digital elevation models (DEM of Difference—DoD) based on terrestrial laser scanning (TLS) surveys. The research was conducted on the 0.2 km2 Scottbreen valley glacier foreland located in the north-western part of Wedel-Jarlsberg Land (Svalbard) in August of 2013. The comparison between DTMs at 3-week intervals made it possible to identify erosion and depositional areas, as well as the volume of the melting glacier’s terminus. It showed a considerable recession rate of the Scottbreen (20 m year−1) while its forefield was being reshaped by the proglacial Scott River. A study area of 205,389 m2, 31% of which is occupied by the glacier (clear ice zone), was included in the repeated TLS survey, which was performed from five permanent scan station points (registered on the basis of five target points—TP). The resultant point clouds with a density ranging from 91 to 336 pt m−2 were converted into DEMs (at a spacing of 0.1 m). They were then put together to identify erosion and depositional areas using Geomorphic Change Detection Software (GCD). During the 3-week interval, the retreat of the glacier’s snout ranged from 3 to 9 m (mean of 5 m), which was accompanied by an average lowering of the surface by up to 0.86 m (±0.03 m) and a decrease of ice volume by 53,475 m3 (±1761 m3). The deglaciated area increased by 4549 m2 (~5%) as a result of the recession, which resulted in an extensive reshaping of the recently deglaciated area. The DEM of Difference (DoD) analyses showed the following: (i) lowering of the glacial surface by melting and ii) predominance of deposition in the glacier’s marginal zone. In fact, 17,570 m3 (±1172 m3) of sediments were deposited in the glacier forefield (41,451 m2). Also, the erosion of sediment layers having a volume of 11,974 m3 (±1313 m3) covered an area equal to 46,429 m2 (53%). This occurrence was primarily based on the washing away of banks and the deepening of proglacial stream beds, as well as the washing away of the lower parts of moraine hillocks and outwash fans.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation

Reference78 articles.

1. Glacier Atlas of Svalbard and Jan Mayen;Hagen,1993

2. Mass Balance of Arctic Glaciers;Jania,1996

3. On the Net Mass Balance of the Glaciers and Ice Caps in Svalbard, Norwegian Arctic

4. Geometry changes on Svalbard glaciers: mass-balance or dynamic response?

5. Tidewater glaciers of Svalbard: Recent changes and estimates of calving fluxes;Błaszczyk;Polar Res.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3