Geomorphic Changes of the Scott River Alluvial Fan in Relation to a Four-Day Flood Event

Author:

Kociuba Waldemar1ORCID

Affiliation:

1. Institute of Earth and Environmental Sciences, Maria Curie-Skłodowska University, 20-031 Lublin, Poland

Abstract

A four-day glacier-melt flood (13–16 August 2013) caused abrupt geomorphic changes in the proglacial gravel-bed Scott River, which drains the small (10 km2) Scott Glacier catchment (SW Svalbard). This type of flood occurs on Svalbard increasingly during periods of abnormally warm or rainy weather in summer or early autumn, and the probability of occurrence grows in direct proportion to the increase in temperature and/or precipitation intensity. In the summer of 2013, during the measurement season, the highest daily precipitation (17 mm) occurred on 13 August. During the following four days, it constituted in total 47 mm, i.e., 50% of the precipitation total for the measurement period of 2013. The largest flood in 20 years was caused by high precipitation with a synchronous rise in temperature from about 1.0 to 8.6 °C. These values exceeded multi-year averages (32 mm and 5.0 °C, respectively) at an average discharge of 0.9 m3/s (melt season mean 1986–2011). These conditions caused a rapid and abrupt response of the river with the dominant (90%) glacier-fed. The increase in discharge to 4.6 m3/s, initiated by the glacial flood, mobilized significant amounts of sediment in the river bed and channel. Geomorphic changes within the alluvial fan as an area of 58,940 m2, located at the mouth of the Scott River, were detected by multi-sites terrestrial laser scanning using a Leica Scan Station C10 and then estimated using Geomorphic Change Detection (GCD) software. The changes found involved 39% of the alluvial fan area (23,231 m2). The flood-induced total area of lowering (erosion) covered 26% of the alluvial fan (6035 m2), resulting in the removal of 1183 ± 121 m3 of sediment volume. During the final phase of the flood, two times more sediment (1919 ± 344 m3) was re-deposited within the alluvial fan surface, causing significant aggradation on 74% of its area (17,196 m2). These geomorphic changes resulted in an average lowering (erosion) of the alluvial fan surface of 0.2 m and an average rising (deposition) of 0.1 m.

Funder

National Science Center

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference60 articles.

1. Beylich, A.A., and Warburton, J. (2007). Analysis of Source-to-Sink Fluxes and Sediment Budgets in Changing High-Latitude and High-Altitude Cold Environments: SEDIFLUX Manual, Norges Geologiske Undersokelse. [1st ed.].

2. Assessment of Sediment Sources throughout the Proglacial Area of a Small Arctic Catchment Based on High-Resolution Digital Elevation Models;Kociuba;Geomorphology,2017

3. An Alpinie proglacial fluvial sediment budget;Warburton;Geogr. Ann.,1990

4. Sediment budget and relief development in Hrafndalur, subarctic oceanic Eastern Iceland;Beylich;Arct. Antarct. Alp. Res.,2009

5. A framework for characterizing fluvial sediment fluxes from source to sink in cold environments;Orwin;Geogr. Ann.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3