A New Systematic Framework for Optimization of Multi-Temporal Terrestrial LiDAR Surveys over Complex Gully Morphology

Author:

Domazetović FranORCID,Šiljeg AnteORCID,Marić IvanORCID,Panđa LovreORCID

Abstract

Terrestrial LiDAR scanning (TLS) has in preceding years emerged as one of the most accurate and reliable geospatial methods for the creation of very-high resolution (VHR) models over gullies and other complex geomorphic features. Rough terrain morphology and rapid erosion induced spatio-temporal changes (STCs) can lead to significant challenges in multi-temporal field TLS surveys. In this study, we present a newly developed systematic framework for the optimization of multi-temporal terrestrial LiDAR surveys through the implementation of thorough systematic pre-survey planning and field preparation phases. The developed systematic framework is aimed at increase of accuracy and repeatability of multi-temporal TLS surveys, where optimal TLS positions are determined based on visibility analysis. The whole process of selection of optimal TLS positions was automated with the developed TLS positioning tool (TPT), which allows the user to adjust the parameters of visibility analysis to local terrain characteristics and the specifications of available terrestrial laser scanners. Application and validation of the developed framework were carried out over the gully Santiš (1226.97 m2), located at Pag Island (Croatia). Eight optimal TLS positions were determined by the TPT tool, from which planned coverage included almost 97% of the whole gully area and 99.10% of complex gully headcut morphology. In order to validate the performance of the applied framework, multi-temporal TLS surveys were carried out over the gully Santiš in December 2019 and 2020 using the Faro Focus M70 TLS. Field multi-temporal TLS surveys have confirmed the accuracy and reliability of the developed systematic framework, where very-high coverage (>95%) was achieved. Shadowing effects within the complex overhangs in the gully headcut and deeply incised sub-channels were successfully minimalized, thus allowing accurate detection and quantification of erosion induced STCs. Detection of intensive erosion induced STCs within the observed one-year period was carried out for the chosen part of the gully headcut. Most of the detected STCs were related to the mass collapse and gradual uphill retreat of the headcut, where in total 2.42 m2 of soil has been eroded. The developed optimization framework has significantly facilitated the implementation of multi-temporal TLS surveys, raising both their accuracy and repeatability. Therefore, it has great potential for further application over gullies and other complex geomorphic features where accurate multi-temporal TLS surveys are required for monitoring and detection of different STCs.

Funder

Croatian Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3