Dominant Elongase Activity of Elovl5a but Higher Expression of Elovl5b in Common Carp (Cyprinus carpio)

Author:

Zhao RanORCID,Wang Ya-Xin,Yang Chen-Ru,Li Shang-Qi,Li Jin-Cheng,Sun Xiao-Qing,Wang Hong-Wei,Wang Qi,Zhang YanORCID,Li Jiong-Tang

Abstract

Most diploid freshwater and marine fish encode one elovl5 elongase, having substrate specificity and activities towards C18, C20 and C22 polyunsaturated fatty acids (PUFAs). The allo-tetraploid common carp is hypothesized to encode two duplicated elovl5 genes. How these two elovl5 genes adapt to coordinate the PUFA biosynthesis through elongase function and expression divergence requires elucidation. In this study, we obtained the full-length cDNA sequences of two elovl5 genes in common carp, named as elovl5a and elovl5b. Functional characterization showed that both enzymes had elongase activity towards C18, C20 and C22 PUFAs. Especially, the activities of these two enzymes towards C22 PUFAs ranged from 3.87% to 8.24%, higher than those in most freshwater and marine fish. The Elovl5a had higher elongase activities than Elovl5b towards seven substrates. The spatial-temporal expression showed that both genes co-transcribed in all tissues and development stages. However, the expression levels of elovl5b were significantly higher than those of elovl5a in all examined conditions, suggesting that elovl5b would be the dominantly expressed gene. These two genes had different potential transcriptional binding sites. These results revealed the complicated roles of elovl5 on PUFA synthesis in common carp. The data also increased the knowledge of co-ordination between two homoeologs of the polyploid fish through function and expression divergence.

Funder

National Key Research and Development Program

Beijing Municipal Natural Science Foundation

National Natural Science Foundation of China

Special Scientific Research Funds for Central Non-profit Institutes, Chinese Academy of Fishery Sciences

National Freshwater Genetic Resource Centre

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3