Factors limiting the spread of middle- and low-altitude fishes to the Qinghai-Tibet plateau

Author:

Li Songtao,Gu Haoran,Wang Yuanfu,Wang Zhijian

Abstract

The distribution pattern of species is determined by the environment and their adaptability to the environment. Qinghai-Tibet Plateau has become a natural laboratory for studying adaptive evolution due to its extreme environmental characteristics such as low temperature, low oxygen, high salinity and high ultraviolet radiation (UVR). Fish are sensitive to the environmental stress, so they are ideal materials for studying high-altitude adaptation of animals. Previous studies have mainly focused on the adaptability of plateau species, but the reasons why plain species cannot spread to the plateau have been ignored. In this study, stress experiments and histological experiments were used to compare the tolerance of six Barbini fishes (family: Cyprinidae) distributed at different altitudes and regions to low temperature, low oxygen, salinity and UVR. Results showed that the tolerance of fishes to high-altitude environmental stress factors was closely related to the environmental stress of their main habitats. The high-altitude fish Gymnocypris eckloni had strong tolerance to all stress factors, while the other five fishes from middle and low altitudes could not adapt to single or multiple stress factors, with significant interspecific differences. Among these factors, middle- and low-altitude fishes showed common low tolerance to UVR, suggesting that high UVR, the factor lacking at low altitude areas, plays an important role. Moreover, during the uplift of the Qinghai-Tibet Plateau, Schizothorax fish disappeared from the middle of the plateau. We speculate that this was caused by its intolerance to the increasingly extreme plateau environment, especially salinity.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3