Nanomechanical and Topochemical Changes in Elm Wood from Ancient Timber Constructions in Relation to Natural Aging

Author:

Han LiuyangORCID,Wang Kun,Wang Weibin,Guo Juan,Zhou Haibin

Abstract

Knowledge of properties of building materials affected by aging is of great importance to conserve cultural heritages or replace their biopolymer components. The objective of the study was to investigate the chemical characterization change in the biopolymer components and identify whether these changes are correlated with alterations in the nanomechanical properties of the wood cell wall bio-composites in relation to natural aging. The effects of natural aging on the elm (Ulmus) wood component (dated from 1642 to 1681) of Chenghuang Temple, an ancient timber construction in China were investigated to understand the chemical and mechanical changes in the wood cell wall. Especially, confocal Raman microscopy and nanoindentation (NI) were used to track changes in the chemical structure and nanomechanical properties. The results showed that the morphological, chemical and physical properties of cell walls changed with aging. After aging, the cell structure showed evidential alternations, and the wood components, especially hemicellulose and lignin, were degraded, leading to deterioration of mechanical properties of aged wood compared with normal wood. Morphology deterioration and micromechanical changes only occurred on the surface with the depth of about 3.6 mm of the aged element. This study would be helpful to provide practical guidance for protecting the apparent performance of ancient timber structures.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3