Applicability Evaluation of Modified Epoxy Resin in the Repair and Reinforcement of Ancient Building Timber Members

Author:

Han Xu1,Wang Shuangyong1,Huang Lei1,Zhou Haibin1ORCID

Affiliation:

1. Research Institute of Wood Industry, Chinese Academy of Forestry, Xiang Shan Road, Haidian District, Beijing 100091, China

Abstract

To investigate the potential of modified epoxy resin for repairing and strengthening historical wooden structures, this study utilized polyurethane and silicone-modified epoxy resin as the base, alongside a polyamine curing agent. The resin mixture was cured at ambient temperature, resulting in the creation of ten unique epoxy resin systems. Investigation into the chemical structure and alterations to the glass transition temperature were conducted. The study conducted tests and characterization of viscosity, curing rate, mechanical properties, stress failure mode, hygrothermal aging resistance, and bonding properties. The results reveal that the curing degree of the two modified epoxy resins is high after being cured at room temperature, and the chemical structure and curing rate show insignificant changes. The range of the glass transition temperature for the modified epoxy resin is between 61.31 °C and 70.51 °C. The incorporation of polyurethane and silicone molecular chains into the epoxy resin cross-linking curing system enhances the toughness of the epoxy resin. The modified resin achieves a maximum elongation at break that is 5.18 times greater than that of the unmodified resin, along with a maximum tensile strength and a compressive strength that are 7.94 and 1.74 times, respectively, higher than those in the Chinese technical specifications for the maintenance and reinforcement of ancient wooden structures. The increase in toughness changes the failure mode of the cured epoxy resin. The modified epoxy resin exhibits great bonding ability to aged wood, with a shear strength of up to 9.6 MPa along the grain. As a result, the modified epoxy resin meets the requirements for the reinforcement and repair of the timber members of ancient buildings.

Funder

Chinese Academy of Cultural Heritage under the project “Key Technologies for the Restoration and Reinforcement of Damaged Wooden Components of Yingxian Wooden Pagoda”

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3