Author:
Liu Tiantian,Xi Guanglan,Han Xiangna,Yin Yafang,Han Liuyang
Abstract
AbstractThe significance of waterlogged archaeological wood (WAW) lies in its profound informational value, encompassing historical, cultural, artistic, and scientific aspects of human civilization, and therefore need to be properly studied and preserved. In this study, the utilization of near-infrared (NIR) spectroscopy is employed as a predictive tool for assessing the hardness value of WAW. Given the submerged burial conditions, waterlogged wooden heritage frequently undergo substantial degradation in their physical and mechanical properties. The mechanical properties of waterlogged wooden heritage are essential for evaluating their state of preservation and devising appropriate conservation and restoration strategies. However, conventional methods for testing mechanical properties are limited by factors such as the availability of adequate sample size and quantity, adherence to the “principle of minimum intervention,” and cost considerations. NIR spectroscopy is a non-destructive, rapid, sensitive, and low-cost analytical technique with great potential for application in this area. In this study, two large and significant ancient Chinese shipwrecks were investigated. One hundred ninety-seven samples were collected and analyzed using NIR spectroscopy and a portable C-type shore hardness testing method. A partial least squares (PLS) regression model was developed to predict the hardness of the WAW. The model was optimized and validated using different preprocessing methods and spectral ranges. The results indicate that the best models were obtained with first derivatives + multiple scattering corrections (MSC) and first derivatives + standard normal variate (SNV) preprocessing in the 1000–2100 nm spectral range, both with an R2c of 0.97, a root mean squared error of correction (RMSEC) of 2.39 and 2.40, and a standard error of correction (SEC) of 2.40 and 2.41. Furthermore, they exhibited an R2v of 0.89 and 0.87, a root mean squared error of cross-validation (RMSECV) of 4.43 and 4.67, a standard error of cross-validation (SECV) of 4.45 and 4.68, and RPD values of 3.02 and 2.88, respectively. A coefficient of determination of the established prediction model (R2p) of 0.89 with a relative standard deviation for prediction (RSD) of 6.9% < 10% was obtained using a sample from the prediction set to predict the established model inversely. These results demonstrate that NIR spectroscopy could enable a rapid, non-destructive, and accurate estimation of the hardness of WAW. Moreover, by carefully choosing appropriate preprocessing techniques and spectral ranges, the predictive capabilities and accuracy of the model can be further enhanced. This research also contributes to the development of a theoretical framework and a methodological approach for future studies in this field. Furthermore, the data obtained from this study are crucial for determining effective preservation strategies for waterlogged archaeological wood.
Funder
National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Subject
Archeology,Archeology,Conservation,Computer Science Applications,Materials Science (miscellaneous),Chemistry (miscellaneous),Spectroscopy
Reference67 articles.
1. Han L, Han X, Tian X, Zhou H, Yin Y, Guo J. NIR spectroscopy and thermogravimetric analysis to assess the effect of three reinforcing agents on the micromechanical properties of archaeological wood from “Xiaobaijiao I” shipwreck. Spectr Spectr Anal. 2022;42:1529–34.
2. Andrey Borisovich S, et al. Fire hazard and fire resistance of wooden structures. Cham: Springer; 2023. p. 1–15.
3. Chen J, Huang X, Chen X, Chen Z. Corrosion type and conservation of archaeological waterlogged wood. Mater Rev. 2022;29(96–101):128.
4. Xia Y, Chen TY, Wen JL, Zhao YL, Qiu J, Sun RC. Multi-analysis of chemical transformations of lignin macromolecules from waterlogged archaeological wood. Int J Biol Macromol. 2018;109:407–16.
5. Han L, Wang K, Wang W, Guo J, Zhou H. Nanomechanical and topochemical changes in elm wood from ancient timber constructions in relation to natural aging. Materials. 2019;12:786.