Prediction model of the hardness of waterlogged archaeological wood based on NIR spectroscopy

Author:

Liu Tiantian,Xi Guanglan,Han Xiangna,Yin Yafang,Han Liuyang

Abstract

AbstractThe significance of waterlogged archaeological wood (WAW) lies in its profound informational value, encompassing historical, cultural, artistic, and scientific aspects of human civilization, and therefore need to be properly studied and preserved. In this study, the utilization of near-infrared (NIR) spectroscopy is employed as a predictive tool for assessing the hardness value of WAW. Given the submerged burial conditions, waterlogged wooden heritage frequently undergo substantial degradation in their physical and mechanical properties. The mechanical properties of waterlogged wooden heritage are essential for evaluating their state of preservation and devising appropriate conservation and restoration strategies. However, conventional methods for testing mechanical properties are limited by factors such as the availability of adequate sample size and quantity, adherence to the “principle of minimum intervention,” and cost considerations. NIR spectroscopy is a non-destructive, rapid, sensitive, and low-cost analytical technique with great potential for application in this area. In this study, two large and significant ancient Chinese shipwrecks were investigated. One hundred ninety-seven samples were collected and analyzed using NIR spectroscopy and a portable C-type shore hardness testing method. A partial least squares (PLS) regression model was developed to predict the hardness of the WAW. The model was optimized and validated using different preprocessing methods and spectral ranges. The results indicate that the best models were obtained with first derivatives + multiple scattering corrections (MSC) and first derivatives + standard normal variate (SNV) preprocessing in the 1000–2100 nm spectral range, both with an R2c of 0.97, a root mean squared error of correction (RMSEC) of 2.39 and 2.40, and a standard error of correction (SEC) of 2.40 and 2.41. Furthermore, they exhibited an R2v of 0.89 and 0.87, a root mean squared error of cross-validation (RMSECV) of 4.43 and 4.67, a standard error of cross-validation (SECV) of 4.45 and 4.68, and RPD values of 3.02 and 2.88, respectively. A coefficient of determination of the established prediction model (R2p) of 0.89 with a relative standard deviation for prediction (RSD) of 6.9% < 10% was obtained using a sample from the prediction set to predict the established model inversely. These results demonstrate that NIR spectroscopy could enable a rapid, non-destructive, and accurate estimation of the hardness of WAW. Moreover, by carefully choosing appropriate preprocessing techniques and spectral ranges, the predictive capabilities and accuracy of the model can be further enhanced. This research also contributes to the development of a theoretical framework and a methodological approach for future studies in this field. Furthermore, the data obtained from this study are crucial for determining effective preservation strategies for waterlogged archaeological wood.

Funder

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Archeology,Archeology,Conservation,Computer Science Applications,Materials Science (miscellaneous),Chemistry (miscellaneous),Spectroscopy

Reference67 articles.

1. Han L, Han X, Tian X, Zhou H, Yin Y, Guo J. NIR spectroscopy and thermogravimetric analysis to assess the effect of three reinforcing agents on the micromechanical properties of archaeological wood from “Xiaobaijiao I” shipwreck. Spectr Spectr Anal. 2022;42:1529–34.

2. Andrey Borisovich S, et al. Fire hazard and fire resistance of wooden structures. Cham: Springer; 2023. p. 1–15.

3. Chen J, Huang X, Chen X, Chen Z. Corrosion type and conservation of archaeological waterlogged wood. Mater Rev. 2022;29(96–101):128.

4. Xia Y, Chen TY, Wen JL, Zhao YL, Qiu J, Sun RC. Multi-analysis of chemical transformations of lignin macromolecules from waterlogged archaeological wood. Int J Biol Macromol. 2018;109:407–16.

5. Han L, Wang K, Wang W, Guo J, Zhou H. Nanomechanical and topochemical changes in elm wood from ancient timber constructions in relation to natural aging. Materials. 2019;12:786.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3