Effects of Geometric Parameters and Heat-Transfer Fluid Injection Direction on Enhanced Phase-Change Energy Storage in Vertical Shell-and-Tube System

Author:

Guo Zhanjun1,Zhou Wu1,Liu Sen1,Kang Zhangyang1ORCID,Tan Rufei1

Affiliation:

1. School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

Abstract

Internationally, energy-storage technologies have facilitated the large-scale utilization of renewable energy, reducing reliance on conventional power generation and enhancing energy efficiency. In the pursuit of strengthening the efficiency of phase-change energy-storage systems, the focus lies on further enhancing the efficiency of vertical shell-and-tube energy-storage systems. This study investigates the influence of two different heat-transfer fluid (HTF) injection directions on the melting of phase-change materials (PCM) in a vertical shell-and-tube latent heat storage (LHS) system. The melting behavior of PCM is analyzed under both pure conduction and natural convection conditions. The research findings reveal that during the initial melting stage, both HTF injection methods primarily rely on thermal conduction, resulting in no significant changes in PCM melting. However, in the later stages of natural convection, bottom HTF injection exhibits superior heat-transfer efficiency compared to top injection. Under a constant volume of phase-change material, both pipe length and pipe thickness affect the PCM melting process. As the pipe length increases within the range of 1.6 m to 0.2 m, the PCM melting time also increases. The results show that the melting time of the PCM is reduced by almost 15,000 s when the tube length H exceeds 800 mm, regardless of whether the heat-transfer fluid is injected at the top or bottom. In this paper, we also obtained results that the three composites containing 10% expanded graphite save 5.3%, 10.2%, and 14.3% of melting time, respectively, compared to pure paraffin when H = 200 mm and top injection are considered. For bottom injection, the three composites saved 7.7%, 12.5%, and 17.2% of melting time, respectively. This further emphasizes the more significant effect of priming in improving melting time.

Funder

the Academic Degrees & Graduate Education Reform Project of Henan Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3