Design and Research of Heat Storage Enhancement by Innovative Wave Fin in a Hot Water–Oil-Displacement System

Author:

Ning Tao12,Huang Xinyu1,Su Junwei1,Yang Xiaohu1ORCID

Affiliation:

1. School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. Management Headquarters of Water Injection Project, Yanchang Oil Field Co., Ltd., Yan’an 716000, China

Abstract

Energy storage technology provides a new direction for the utilization of renewable and sustainability energy. The objective of this study is to introduce a novel, wavy, longitudinal fin design, which aims to improve heat transfer in the melting process of a Latent Heat Thermal Energy Storage (LHTES) unit. The main goal is to mitigate the negative effects caused by the refractory zone at the end of the melting phase. A two-dimensional numerical model of LHTES unit is established by using the enthalpy porosity method and verified by experimental data. Through the quantitative comparison between the traditional rectangular fin and the innovative wave fin, the influence of wave fin on the heat transfer mechanism in the heat storage process is revealed. The results show that the average heat storage rate of five and six wave fins is 3.70% and 12.98% higher than that of conventional rectangular fins, respectively, and the average temperature response of six wave fins is 17.78% higher than that of conventional rectangular fins. The addition of the wave fin weakens the negative effect of the refractory zone, but prolongs the heating time of the initial melting point.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3