Analysis of Melting Dynamics and Parametric Optimization in Encapsulated Phase Change Materials for Thermal Energy Storage

Author:

Sharif Safwan,Walvekar RashmiORCID,Khalid MohammadORCID,Vaka Mahesh,Mubarak Nabisab Mujawar

Abstract

Phase change materials (PCMs) effectively store thermal energy via latent heat absorption/release during solid-liquid phase transitions. Salt hydrates and paraffin waxes melting within 30 °C–75 °C are suited for low-temperature applications. However, inherent challenges include poor thermal conductivity and material leakage needing encapsulation. Here, we employ computational fluid dynamics (CFD) simulations to systematically elucidate design parameters optimizing the performance of encapsulated PCM thermal energy storage (TES) systems. Spherical capsules containing paraffin wax or salt hydrate PCMs were modeled under varied encapsulation radii (16–58 mm) and shell thicknesses (18–72 mm) using stainless steel. Increasing radius exponentially extended melting times due to declining surface area-to-volume ratios, indicating smaller subdivided capsules accelerate heat transfer. An optimum 54–55 mm thickness maximized efficiency before reductions from lessened surface effects. Salt hydrate doubled the volumetric storage density to 9.032 $/kWh versus paraffin, highlighting the importance of suitable PCM selection. Through elucidating size, containment and material impacts, these CFD analyses provide valuable insights guiding encapsulated TES system optimization for sustainable thermal management applications.

Funder

Xiamen University Malaysia

Publisher

The Electrochemical Society

Reference23 articles.

1. Thermal energy storage for gas turbine power augmentation;Gkoutzamanis;Journal of the Global Power and Propulsion Society,2019

2. On the thermal performance of a novel PCM nanocapsule: the effect of core/shell;Nikpourian;Renewable Energy,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3