Validation of Cloud-Gap-Filled Snow Cover of MODIS Daily Cloud-Free Snow Cover Products on the Qinghai–Tibetan Plateau

Author:

Yuan Yecheng,Li Baolin,Gao Xizhang,Liu Wei,Li Ying,Li Rui

Abstract

Accurate daily snow cover extent is a significant input for hydrological applications in the Qinghai–Tibetan Plateau (QTP). Although several Moderate Resolution Imaging Spectroradiometer (MODIS) daily cloud-free snow cover products over the QTP are openly accessible, the cloud-gap-filled snow cover from these products has not yet been validated. This study assessed the accuracy of cloud-gap-filled snow cover from three open accessible MODIS daily products based on snow maps retrieved from Landsat TM images. The F1-score (FS) from daily cloud-free MODIS snow cover for the combined MOD10A1F and MYD10A1F (SC1) was 64.4%, which was 7.4% points and 5.3% points higher than the other two commonly used products (SC2 and SC3), respectively. The superior accuracies from SC1 were more evident in regions with altitudes lower than 5000 m, with a weighted average FS by the area percentage of the altitude regions of 58.3%, which was 6.9% points and 9.1% points higher than SC2 and SC3. The improved SC1 accuracies also indicated regional clustering characteristics with higher FS values compared to SC2 and SC3. The lower accuracies of cloud-gap-filled snow cover from SC2 and SC3 were mainly due to the limitation in determining snow cover based on the method of the inferred snow line and the overestimation of the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) snow water equivalent (SWE). These results indicate that the temporal filter approach used in SC1 is a good solution to produce daily cloud-gap-filled snow cover data for the QTP because of its higher accuracy and simple computation. The findings can be helpful for the selection of cloud-removal algorithms for determining snow cover dynamics and phenological parameters on the QTP.

Funder

National Key Research and Development Plan of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference67 articles.

1. China: The third pole;Nature,2008

2. Third pole environment (TPE);Environ. Dev.,2012

3. Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis;Bull. Am. Meteorol. Soc.,2018

4. Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives;Earth Sci. Rev.,2020

5. Water quality in the Tibetan Plateau: Major ions and trace elements in rivers of the ‘Water Tower of Asia’;Sci. Total Environ.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3