Combined Use of Multiple Cloud‐Free Snow Cover Products in China and Its High‐Mountain Region: Implications From Snow Cover Identification to Snow Phenology Detection

Author:

Zhang Longhui123,Zhang Hongbo123ORCID,Sun Xueyan4,Luo Lun5

Affiliation:

1. National Key Laboratory for Efficient Utilization of Agricultural Water Resources China Agricultural University Beijing China

2. College of Water Resources & Civil Engineering China Agricultural University Beijing China

3. Key Laboratory of Water Cycle and Related Land Surface Processes Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China

4. Yantai Research Institute, China Agricultural University Yantai China

5. Middle Yarlung Zangbo River Natural Resources Observation and Research Station of Tibet Autonomous Region Research Center of Applied Geology of China Geological Survey Cheng Du China

Abstract

AbstractAccurate snow phenology detection, including snow cover days (SCD), snow start date (SSD), and snow end date (SED), is increasingly important for understanding mountain hydrology such as snow heterogeneity and snowmelt seasonality. Multiple cloud‐free daily snow cover products have recently been developed in China, employing diverse retrieval algorithms and cloud‐gap‐filling methods, resulting in varying accuracy levels. However, comprehensive analysis of differences among products and their impact on snow phenology detection is lacking. This study systematically evaluates eight state‐of‐the‐art snow cover products in China, focusing on the challenging Tibetan Plateau (TP). We introduce a novel metric, the consistency‐weighted correlation coefficient (CWR), customized for SSD and SED detection, and propose product‐combining schemes like “ensemble voting” and “sensor preference” to enhance reliability. Our findings highlight the prime influence of retrieval algorithms under clear‐sky conditions on accuracy, surpassing the importance of cloud‐gap‐filling methods. Specifically, a product optimizing normalized difference snow index thresholds for diverse landcover types consistently outperforms others in detecting all three snow phenology parameters, with correlation coefficients for SCD of 0.82 and 0.69, and CWR values for SSD of 0.54 and 0.40, and for SED of 0.53 and 0.37 in both China and the TP, respectively. Moreover, our proposed scheme combining three high‐accuracy products significantly enhances snow cover identification and SCD detection, especially when the best‐performing product alone faces substantial uncertainty. These findings provide immediate, crucial implications for optimizing the use of multiple cloud‐free products to enhance snow phenology detection, ultimately advancing the applicability of derived snow parameters in mountain hydrology research.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3