Abstract
The objective of the Ground to Space CALibration Experiment (G-SCALE) is to demonstrate the use of convex mirrors as a radiometric and spatial calibration and validation technology for Earth Observation assets, operating at multiple altitudes and spatial scales. Specifically, point sources with NIST-traceable absolute radiance signal are evaluated for simultaneous vicarious calibration of multi- and hyperspectral sensors in the VNIR/SWIR range, aboard Unmanned Aerial Vehicles (UAVs), manned aircraft, and satellite platforms. We introduce the experimental process, field site, instrumentation, and preliminary results of the G-SCALE, providing context for forthcoming papers that will detail the results of intercomparison between sensor technologies and remote sensing applications utilizing the mirror-based calibration approach, which is scalable across a wide range of pixel sizes with appropriate facilities. The experiment was carried out at the Rochester Institute of Technology’s Tait Preserve in Penfield, NY, USA on 23 July 2021. The G-SCALE represents a unique, international collaboration between commercial, academic, and government entities for the purpose of evaluating a novel method to improve vicarious calibration and validation for Earth Observation.
Subject
General Earth and Planetary Sciences
Reference64 articles.
1. A review of applications of satellite earth observation data for global societal benefit and stewardship of planet earth;Kansakar;Space Policy,2016
2. Rice, K. (2018). Convolutional Neural Networks for Detection and Classification of Maritime Vessels in Eletro-Optical Satellite Imagery. [Ph.D. Thesis, Naval Postgraduate School].
3. Agapiou, A. (2020). Evaluation of Landsat 8 OLI/TIRS Level-2 and Sentinel 2 Level-1C Fusion Techniques Intended for Image Segmentation of Archaeological Landscapes and Proxies. Remote Sens., 12.
4. Niroumand-Jadidi, M., Bovolo, F., Bruzzone, L., and Gege, P. (2020). Physics-based Bathymetry and Water Quality Retrieval Using PlanetScope Imagery: Impacts of 2020 COVID-19 Lockdown and 2019 Extreme Flood in the Venice Lagoon. Remote Sens., 12.
5. Current and near-term advances in Earth observation for ecological applications;Ustin;Ecol. Process.,2021
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献