Current and near-term advances in Earth observation for ecological applications

Author:

Ustin Susan L.ORCID,Middleton Elizabeth M.

Abstract

AbstractThere is an unprecedented array of new satellite technologies with capabilities for advancing our understanding of ecological processes and the changing composition of the Earth’s biosphere at scales from local plots to the whole planet. We identified 48 instruments and 13 platforms with multiple instruments that are of broad interest to the environmental sciences that either collected data in the 2000s, were recently launched, or are planned for launch in this decade. We have restricted our review to instruments that primarily observe terrestrial landscapes or coastal margins and are available under free and open data policies. We focused on imagers that passively measure wavelengths in the reflected solar and emitted thermal spectrum. The suite of instruments we describe measure land surface characteristics, including land cover, but provide a more detailed monitoring of ecosystems, plant communities, and even some species then possible from historic sensors. The newer instruments have potential to greatly improve our understanding of ecosystem functional relationships among plant traits like leaf mass area (LMA), total nitrogen content, and leaf area index (LAI). They provide new information on physiological processes related to photosynthesis, transpiration and respiration, and stress detection, including capabilities to measure key plant and soil biophysical properties. These include canopy and soil temperature and emissivity, chlorophyll fluorescence, and biogeochemical contents like photosynthetic pigments (e.g., chlorophylls, carotenoids, and phycobiliproteins from cyanobacteria), water, cellulose, lignin, and nitrogen in foliar proteins. These data will enable us to quantify and characterize various soil properties such as iron content, several types of soil clays, organic matter, and other components. Most of these satellites are in low Earth orbit (LEO), but we include a few in geostationary orbit (GEO) because of their potential to measure plant physiological traits over diurnal periods, improving estimates of water and carbon budgets. We also include a few spaceborne active LiDAR and radar imagers designed for quantifying surface topography, changes in surface structure, and 3-dimensional canopy properties such as height, area, vertical profiles, and gap structure. We provide a description of each instrument and tables to summarize their characteristics. Lastly, we suggest instrument synergies that are likely to yield improved results when data are combined.

Publisher

Springer Science and Business Media LLC

Subject

Ecological Modelling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3