Multi-Channel High-Dimensional Data Analysis with PARAFAC-GA-BP for Nonstationary Mechanical Fault Diagnosis

Author:

Chen Hanxin,Li Shaoyi,Li Menglong

Abstract

Conventional signal processing methods such as Principle Component Analysis (PCA) focus on the decomposition of signals in the 2D time–frequency domain. Parallel factor analysis (PARAFAC) is a novel method used to decompose multi-dimensional arrays, which focuses on analyzing the relevant feature information by deleting the duplicated information among the multiple measurement points. In the paper, a novel hybrid intelligent algorithm for the fault diagnosis of a mechanical system was proposed to analyze the multiple vibration signals of the centrifugal pump system and multi-dimensional complex signals created by pressure and flow information. The continuous wavelet transform was applied to analyze the high-dimensional multi-channel signals to construct the 3D tensor, which makes use of the advantages of the parallel factor decomposition to extract feature information of the complex system. The method was validated by diagnosing the nonstationary failure modes under the faulty conditions with impeller blade damage, impeller perforation damage and impeller edge damage. The correspondence between different fault characteristics of a centrifugal pump in a time and frequency information matrix was established. The characteristic frequency ranges of the fault modes are effectively presented. The optimization method for a PARAFAC-BP neural network is proposed using a genetic algorithm (GA) to significantly improve the accuracy of the centrifugal pump fault diagnosis.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering

Reference26 articles.

1. A brief discussion on the fault diagnosis and inspection and testing of lifting machinery;Wu;China Equip. Eng.,2021

2. Mechanical fault diagnosis of high-voltage circuit breaker based on phase space reconstruction and improved GSA-SVM;Xia;China Electr. Power,2021

3. Research on Vibration Fault Diagnosis Method and System Implementation of Centrifugal Pump;Zhao;Ph.D. Thesis,2011

4. Internal flow structure, fault detection, and performance optimization of centrifugal pumps

5. Fault identification using a chain of decision trees in an electrical submersible pump operating in a liquid-gas flow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3