A Fault Warning Approach Using an Enhanced Sand Cat Swarm Optimization Algorithm and a Generalized Neural Network

Author:

Pi Youchun1,Tan Yun1,Golmohammadi Amir-Mohammad2ORCID,Guo Yujing1,Xiao Yanfeng1,Chen Yan3

Affiliation:

1. China Yangtze Power, No. 1 Xiba Construction Road, Xiling District, Yichang 443000, China

2. Department of Industrial Engineering, Faculty of Engineering, Arak University, 3848177584 Arak, Iran

3. Independent Researcher, 201, Building 7, Baolong Plaza, Lane 2449 Jinhai Road, Pudong New Area, Shanghai 201209, China

Abstract

With the continuous development and complexity of industrial systems, various types of industrial equipment and systems face increasing risks of failure during operation. Important to these systems is fault warning technology, which can timely detect anomalies before failures and take corresponding preventive measures, thereby reducing production interruptions and maintenance costs, improving production efficiency, and enhancing equipment reliability. Machine learning techniques have proven highly effective for fault detection in modern production processes. Among numerous machine learning algorithms, the generalized neural network stands out due to its simplicity, effectiveness, and applicability to various fault warning scenarios. However, the increasing complexity of systems and equipment presents significant challenges to the generalized neural network. In real-world scenarios, it suffers from drawbacks such as difficulties in determining parameters and getting trapped in local optima, which affect its ability to meet the requirements of high efficiency and accuracy. To overcome these issues, this paper proposes a fault warning method based on an enhanced sand cat swarm optimization algorithm combined with a generalized neural network. First, we develop an enhanced sand cat swarm optimization algorithm that incorporates an improved chaotic mapping initialization strategy, as well as Cauchy mutation and reverse elite strategies based on adaptive selection. Subsequently, we utilize this algorithm to optimize the generalized neural network and determine its optimal parameters, effectively improving the accuracy and reliability of system fault warnings. The proposed method is validated using actual industrial system data, specifically for generator fault warning, and is demonstrated to outperform other advanced fault warning techniques. This research provides valuable insights and promising directions for enhancing industrial fault warning capabilities.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3