An Analytical Study Predicting Future Conditions and Application Strategies of Concrete Bridge Pavement Based on Pavement Management System Database

Author:

Lee Jinhyuk1ORCID,Jung Donghyuk2ORCID,Baek Cheolmin2,An Deoksoon2

Affiliation:

1. Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology, Goyang-daero 283, Ilsanseo-gu, Goyang-si 10223, Gyeonggi-do, Republic of Korea

2. Department of Highway & Transportation Research, Korea Institute of Civil Engineering and Building Technology, Goyang-daero 283, Ilsanseo-gu, Goyang-si 10223, Gyeonggi-do, Republic of Korea

Abstract

South Korea is implementing various policies to address the aging of infrastructures and improve road infrastructure management. Moreover, numerous research projects aiming at the development of necessary technologies for the proper implementation of these policies are underway. This study specifically aims to overcome existing problems in bridge pavement maintenance, such as the inaccuracy of future condition predictions and the selection of incorrect evaluation indicators. Our goal is to provide a new approach for the improved management of the bridge pavement management system (BPMS). To address the issues of accuracy in future condition prediction and evaluation indicator selection within the existing maintenance system, we utilized particle filtering, a Kalman filter method among machine learning techniques. This method allows for the prediction of future conditions, based on the nonlinearly collected bridge pavement conditions within BPMS. Furthermore, we proposed a systematic bridge pavement management strategy. This strategy utilizes traffic volume (ESALs; equivalent single axle loadings), a factor that can influence the future condition of bridge pavement, in correlation with the future condition predicted through particle filtering within BPMS.

Funder

the Korea Technology and Information Promotion Agency (TIPA), the Ministry of SMEs and Startups

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3