Deterioration Models for Bridge Pavement Materials for a Life Cycle Cost Analysis

Author:

Han DaeseokORCID,Lee Jin-HyukORCID,Park Ki-Tae

Abstract

As the Framework Act on Sustainable Infrastructure Management has recently been enacted in Korea, it has become mandatory to establish a medium-and long-term plan for managing social infrastructure and evaluating the feasibility of maintenance projects. However, road agencies are experiencing problems due to a lack of deterioration models which are essential to conducting a life cycle cost analysis. Thus, this study developed deterioration models for bridge pavements as the first step to secure the power of execution of the Infrastructure Management Act. The deterioration model subdivided pavement materials into asphalt, conventional concrete, and latex-modified concrete. This study analyzed the data on diagnosis for the last 12 years in Korea by applying the Bayesian Markov Hazard Model. The average life expectancy by pavement type was analyzed as follows: 12.8 years for asphalt pavement; 23.4 years for concrete pavement; and 9.8 years for latex-modified concrete pavement. For the probabilistic life cycle cost analysis and risk management, probability distributions of life expectancy, effective range by confidence level, and Markov transition probability were presented. This study lays a foundation for deterministic and probabilistic life cycle cost analysis of bridge pavement. Future studies need to develop deterioration models standardized for all components of bridges and all types of social infrastructure.

Funder

the ministry of Science and ICT

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference54 articles.

1. Megatrend—Inquire into the Future of Construction Vol. 4: Sustainable Infrastructure Management;Lee,2021

2. Framework Act on Sustainable Infrastructure Management;MOLIT (Ministry of Land, Infrastructure and Transport),2020

3. Evaluation Standard for Performance Improvement Project of Road Facilities;MOLIT (Ministry of Land, Infrastructure and Transport),2021

4. Special Act on the Safety and Management of Facilities;MOLIT (Ministry of Land, Infrastructure and Transport),2021

5. Facility Management System https://www.fms.or.kr/com/mainFrame.do

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3