Abstract
X-Ray fluorescence computed tomography (XFCT) is an emerging biomedical imaging technique, which demands the development of new contrast agents. Ruthenium (Ru) and rhodium (Rh) have spectrally attractive Kα edge energies, qualifying them as new XFCT bio-imaging probes. Metallic Ru and Rh nanoparticles are synthesized by polyol method, in the presence of a stabilizer. The effect of several reaction parameters, including reaction temperature time, precursor and stabilizer concentration, and stabilizer molecular weight, on the size of particles, were studied. Resultant materials were characterized in detail using XRD, TEM, FT-IR, DLS-zeta potential and TGA techniques. Ru particles in the size range of 1–3 nm, and Rh particles of 6–9 nm were obtained. At physiological pH, both material systems showed agglomeration into larger assemblies ranging from 12–104 nm for Ru and 25–50 nm for Rh. Cytotoxicity of the nanoparticles (NPs) was evaluated on macrophages and ovarian cancer cells, showing minimal toxicity in doses up to 50 μg/mL. XFCT performance was evaluated on a small-animal-sized phantom model, demonstrating the possibility of quantitative evaluation of the measured dose with an expected linear response. This work provides a detailed route for the synthesis, size control and characterization of two materials systems as viable contrast agents for XFCT bio-imaging.
Funder
Knut och Alice Wallenbergs Stiftelse
Subject
General Materials Science,General Chemical Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献