Facile Fabrication of BiF3: Ln (Ln = Gd, Yb, Er)@PVP Nanoparticles for High-Efficiency Computed Tomography Imaging

Author:

Xie Jun,Zhou Zonglang,Ma Sihan,Luo Xian,Liu Jiajing,Wang Shengyu,Chen Yuqiang,Yan Jianghua,Luo Fanghong

Abstract

AbstractX-ray computed tomography (CT) has been widely used in clinical practice, and contrast agents such as Iohexol are often used to enhance the contrast of CT imaging between normal and diseased tissue. However, such contrast agents can have some toxicity. Thus, new CT contrast agents are urgently needed. Owing to the high atomic number (Z = 83), low cost, good biological safety, and great X-ray attenuation property (5.74 cm2 kg−1 at 100 keV), bismuth has gained great interest from researchers in the field of nano-sized CT contrast agents. Here, we synthesized BiF3: Ln@PVP nanoparticles (NPs) with an average particle size of about 380 nm. After coating them with polyvinylpyrrolidone (PVP), the BiF3: Ln@PVP NPs possessed good stability and great biocompatibility. Meanwhile, compared with the clinical contrast agent Iohexol, BiF3: Ln@PVP NPs showed superior in vitro CT imaging contrast. Subsequently, after in situ injection with BiF3: Ln@PVP NPs, the CT value of the tumor site after the injection was significantly higher than that before the injection (the CT value of the pre-injection and post-injection was 48.9 HU and 194.58 HU, respectively). The morphology of the gastrointestinal (GI) tract can be clearly observed over time after oral administration of BiF3: Ln@PVP NPs. Finally, the BiF3: Ln@PVP NPs were completely discharged from the GI tract of mice within 48 h of oral administration with no obvious damage to the GI tract. In summary, our easily synthesized BiF3: Ln@PVP NPs can be used as a potential clinical contrast agent and may have broad application prospects in CT imaging.

Funder

National Natural Science Foundation of China

Fujian Provincial Department of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3